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A~trac t - -A numerical simulation was made to determine the motion of particles and fluid in a horizontal 
channel. The simulation was based on the Lagrangian method for the solid phase, where trajectories of 
many particles are calculated by integrating the equations of motion of a single particle. The fluid motion 
was solved using a finite-difference method simultaneously with the particle motion. The present 
simulation requires some empirical parameters concerning the collision of the particles withthe wall. These 
parameters were determined by comparisons between calculated results and measurements, 

1. INTRODUCTION 

Research workers in the field of multiphase flows are stimulated by the high potential of numerical 
fluid-mechanics for single-phase flows and thus take note of the simulation of flows of interest. In 
fact, several recently published works report on gas-solid flows, especially free-jets (Shuen et al. 

1985; Mostafa & Elghobashi 1985; Chen& Wood 1986). However, the same simulation procedure 
as in wall-free flows cannot always be applied to the corresponding pipe flows, because particles 
collide frequently with the pipe wall, resulting in additional losses of kinetic energy. One of the 
most important factors in dealing with collisions is that collisions accompany irregularity. This 
irregularity plays an important role as the necessary mechanism by which particles are conveyed 
in a horizontal pipe. Hence, much effort has been directed towards the problem of particle-wall 
collisions (Matsumoto et al. 1976; Tsuji & Morikawa 1978; Tsuji et al. 1983, 1985). However, our 
approach has had the following problem. 

We used the Lagrangian method to obtain the motion of the solid phase, and assumed that the 
fluid phase is not affected locally by the presence of particles except for the additional loss of 
pressure. Trajectories of individual particles were calculated in a flow field given beforehand by 
integrating the equations of motion and assuming the coefficient of restitution and kinetic friction. 
As a result, the behavior of particles in the pipe and the pressure drop could be predicted 
satisfactorily to some extent. However, it is well-known that fluid velocity profiles are distorted by 
particles, even at a low volume concentration, if the number concentration is high. Therefore, 
improvement of our simulation model was required so that the fluid velocity profiles could be 
calculated. Such a simulation, taking into account the interaction between local fluid velocity and 
particle motion, has already been attempted by Durst et al. (1984) for vertical pipe flow, though 
they ignored particle-wall collisions. 

We considered a horizontal flow in this work, where asymmetric behavior due to gravity is clearly 
observed, and we analyzed a two-dimensional channel flow as the first stage in our attempt. 
The Lagrangian method was adopted here also to calculate the solid phase. For the calculation 
of the fluid phase, the method developed by Patankar & Spalding (1970) was used in combination 
with the PSI-Cell model (Crowe et al. 1977), which is necessary for taking into account the 
interaction between the solid and fluid phases. Regarding the collision between particles and the 
wall, "the virtual wall model" was used in addition to the ordinary relation of the collision between 
spherical particles and a wall. Tsuji et al. (1985) proposed this model to enable spherical particles 
to continue to bounce on the horizontal wall under the influence of gravity. Unfortunately, since 
an exact solution of irregular collisions for arbitrary shaped materials is difficult at the moment, 
one cannot help depending on an empirical method, where several unknown parameters need be 
determined empirically. Therefore, an experimental transport facility with a horizontal channel was 
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constructed for comparisons between calculated and experimental results. In the course of this 
work, a defect in the previous bouncing model was found and modified by referring to 
measurements. The present simulation results were compared with experimental ones with regard 
to the particle and fluid velocity distributions, particle concentrations and pressure drops. 

2. BASIC E Q U A T I O N S  

2. I. Equation of Fluid Motion 

Fluid motion between two parallel plates, shown in figure l, is given by the boundary layer 
equation 

Ou O~ dp 
pu ~x = 00 dx fp'  [1] 

where 

u = the time-averaged fluid velocity, 
r = shear stress, 
p = pressure, 

fp = force exerted by the particles on a unit volume of fluid. 

Following Patankar & Spalding (1970), the dimensionless stream function co is introduced: 

where ~ and qs 0 are defined by 

¢'0 = ~0 0 ' [21 

and 

(?y pu [3] 

fO h 0o = pu dy. [4] 

Using the (x, co) system instead of (x, t)) coordinates and rewriting [1]: 

c~u l ~ r  l ( d p  ) 
0 x = ~ , 0 0 c o  pu dx f~ ' 

[5] 

Since the above equation is a boundary layer type, the finite-difference form of it can be solved 
from the upstream side by turns using the so-called marching method which does not require 
repetition. In the present calculation, the flow field was divided into 14 segments in the y-direction 
and the marching step in the x-direction was set to be half the channel height. 

The effects of particles on the fluid velocity can be taken into account through the term fp in 
[1] and [5], because this term shows the momentum exchange between the fluid and solid phases. 
The definite expression offp  is deduced from the differences in momentum of the particles between 
the instant of entering and on leaving the control volume. That is, the term fp is expressed as 

nm Av~ [6] 
f P =  AVi At 

when the particles exist within the region (volume -- A V i) shown by the dotted line in figure 2, where 
n = the number of  particles in the region, m = the mass of a principle, Av s = the difference in 
particle velocity between the two instants when the particle enters the control volume and leaves 
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Figure 1. Gas-solid two-phase flow in a horizontal channel. 
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Figure 2. Grid and control volume. 

it and At = the time for which the particle remains in the region. If  all the particles follow the same 
trajectory, the number n corresponding to the control volume considered is given by 

qAt 
n = - - ,  [7] 

m 

where q denotes the particle mass flow rate. Substituting [7] into [6], one obtains 

qAv~ [8] 
f P =  AVi" 

If one assumes that all the particles follows the same line, it would bc sufficient to obtain a 
trajectory for only one particle. This assumption means that no particles exist in other regions. In 
practice however, needless to say, many particles exist in many control volumes at the same time. 
Therefore, we use the following method. 

First, calculations of trajectory arc made for many particles with different initial conditions, and 
the trajectory of each particle is recorded. The tcrrn fp is calculated for each particle and each 
control volume using [8]. The values of fp are then divided by the number of particles, which is 
equal to the number of calculation trials. If these values arc given to the regions through which 
the particles pass, it leads to the equivalent result for when many particles are simultaneously in 
many regions. 

2.2. Equations of  Eddy Viscosity and Pressure Loss 

There are several models of eddy viscosity available which consider the effect of particles. 
However they are for the case of fine particles, and thus we neglect such an effect in the present 
simulation as our first approximation. 

Regarding the shear stress, the following expression is adopted: 

Ou 
z = p (v + volt) ~y ; [9] 

and mixing length theory is applied to the kinematic eddy viscosity v,fr in the same way as in 
single-phase flows. 

For the pressure gradient along the flow, the equation 

dp z,+ ~t 
d-S = h L rio] 

is used, where z, and z t arc the shear stresses on the upper and lower wails, respectively, and 3~ 
is the value offp averaged over the cross section. Equation [10] is derived from the one-dimensional 
conservation law of momentum. 
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where 

2.3. Equation of Particle Motion 

Particle motion is given by the following equation: 

d v~ 3 p ( u -  v) - 

1 
+ CL~(pp + ~p)Vp 

~U 
U y 

~ll 
(U - -  Ux) 1 +pp+~--------p g 

v, u = vectors of particle and fluid velocity vectors, respectively, 
vx, v~ = x-, y-components of particle velocity, 

dp = particle diameter, 
pp, p = particle and fluid density, respectively, 

Vp = volume of one particle, 
Co = drag coefficient, 

CLr, CL, = coefficients of life due to particle rotation and velocity shear, respectively. 

In order to obtain the particle motion using [11], the cofficients CD, CLr and CLs must be known. 
Fortunately, existing formula are available for the coefficients Co and CL~ in the same range of 
Reynolds number as in the present flow. For the coefficient CL~, the theoretical result by Saffman 
(1965) was used at first, although it is a solution for low Reynolds numbers. However, the lift force 
due to shear was not taken into account in most calculations in this work, because its contribution 
to the resulting trajectory was found to be negligible. In addition to the drag and lift forces, we 
took the dissipation of particle rotation into account by using the result of Dennis et al. 11980). 

The most difficult problem in calculating trajectories in pipes and ducts is the effect of particle 
collisions with the wall. When a spherical particle collides with a flat plate, as shown in figure 3, 
the relations between the velocities before and after the collision are obtained by the impulsive 
equations. The results are shown in table 1 (Tsuji et al. 1985). An explanation of the results in table 
1 is given in the Appendix. If the spherical particles do not collide too frequently, these relations 
are sufficient to consider the effect of collisions--even in a horizontal channel. However, if a perfect 
sphere collides with a perfect plane wall with a coefficient of restitution < 1, this results in all 
particles sliding along the bottom of the wall after a number of collisions. To avoid such deposition, 
a model is necessary, and in our previous work (Tsuji et al. 1985) we proposed the "abnormal 
bouncing model", which is described in detail below. 

2.4. The Abnormal Bouncing Model 

As described above, a mechanism of abnormal bouncing is necessary to enable spherical particles 
to continue to fly in a horizontal pipe or channel under the influence of gravity. The virtual wall 
model which we proposed is shown in figure 4. In this model, the actual wall is replaced by a virtual 
one with an inclined angle ~, if the incident angle r/of a particle against the wall is less than a certain 
specified value. In order to estimate the momentum loss due to the collision with the virtual wall, 
the relation shown in table 1 can be used. When the particle collides with this virtual wall, the 
momentum of the particle is transformed effectively into the momentum in the y-direction after 
the collision. Therefore the particle continues to bounce on the wall, even though the coefficient 

v ~'1 ~ I I~  " /  l 
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Figure 3. Collision between a particle and wall. 
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Figure 4. Vi r tual  wal l  model. 
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Table I. Solution of  the impulsive equations 
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Condition Velocity Angular velocity 

5 2a V(~) - 2 V = - f  V (°~ - __ ta(0)'~ V~ 
F ~ < 7 f ( e + l )  x 7~ x 5 z,] taX=--a 

Vr  = - eV(~ ) o~r = c~ (~ ) 

_ M v(o, + ~_ :,,o,'~ v~ 
V z - 7 t  z 5 J °~z= ---a 

- 2 V(~) 5 V~O) 
(2) 7f(e + 1-'---~ < ]--~ < 0 Vx= V(ff)+exf(e + I)Vtp ) Ox = totff ) -~aaezf(e + l) 

V r  = - e V ~  ) tar  = ~(~) 

V z= V~ ) + E z f ( e + l ) v ~  ) o 5 co z = ~ )  + ~aaEXf (e + 1)v~ ~ 

(1) 

I Vl = , / ( v ~ )  + a~  ~'): + ( v ~ ) -  a ~ ' )  ~ 

E,  = ( v ~ )  + a ta~ ' ) / l  Vl, ~z = (v~, )  - a ~ ) ) / l  V l  

Definitions: e = coefficient of  restitution; f = coefficient of  kinetic friction; Vx, Vr, V z = translation velocity 
in the X-,Y-, Z-direction, respectively; X, Y = coordinate shown in figure 3 as normal to the X-, 
Y-direction, respectively; ta x, tar, t a z = a n g  ular velocity in the X-, Y-, Z-direction, respectively; 
superscript 0 = before collision. 

of restitution is < 1. However, it is necessary to make an assumption for the angle ~t. Tsuji e t  a L  

(1985) assumed the following equation for a: 

= - 6 ( n  - 8 )  (~ ~</~) 
0 = 0  (r > ~ ) ;  

6 and fl were given empirically as follows: 

2.3 91 1231 
6 =  + - -  

Fr Fr 2 Ft a 

[12] 

fl = 7 °, [13] 

where Fr is the Froude number = iT/x,/~. The above relations were obtained from comparisons 
between experiments and pipeflow simulations (Tsuji e t  a L  1985), but their applicability has not 
been sufficiently confirmed. Hence, in this work the relations are re-examined and modified. 

3. EXPERIMENTAL FACILITIES 

Figure 5 shows an experimental pipeline constructed for comparison with the present simulation. 
A two-dimensional channel made of acrylic plate comprises the test section, the inside height and 
width of which were h = 25 mm and w -- 200 mm, respectively. A Pitot tube was used to measure 
air velocity, and an optical fiber probe developed by Morikawa e t  a l .  (1986) was used to measure 
particle velocity and number density. Figure 6 shows the principle of the present optical fiber probe. 
Figure 7 presents the velocity distribution of air in the spanwise direction obtained with 
single-phase flow at measuring point ® .  This figure indicates that the flow can be regarded as 
approximately two-dimensional. Results obtained under two-phase conditions are presented in the 
next section together with the results of the simulation. 

4. RESULTS 

The conditions adopted for the simulation, which are the same as in the experiment, are as 
follows: 

particle diameter dp= l mm, 
particle density pp = 1000 kg/m 3, 
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Figure 5. Experimental set up: C) blower, ( ~  valve, C) flow rate measuring section, (~) feed tank, C) 
electromagnetic feeder, (~) particle disperser, (~_ measuring section for particle velocity and concen- 
tration, (~) measuring section for air velocity, ~ )  cylone separator, ( ~  receiver tank, C) load cell. 

coefficient of restitution e = 0.8, 
kinetic friction factor f = 0.4, 
channel height h = 25 mm. 

Standard air is assumed as the gas. In the experiment, polystyrene particles were used. It was 
assumed in the simulation that the particles are distributed uniformly in the initial section of  the 
channel, x = 0, where particle velocities are half the mean air velocity t2 averaged over the cross 
section. 

Particle trajectories without abnormal bouncing are shown in figure 8. In the figure, the scale 
of the longitudinal distance is greatly reduced so that the motion of the particles in the whole duct 
can be seen. It is seen in the figure that the vertical distance which particles reach in the channel 
decreases constantly due to collisions with the wall, because the coefficient of  restitution is < 1. 
Resulting in all the particles sliding along the bottom of the wall in a region far from the initial 
point of  calculation. The trajectories with abnormal bouncing are shown in figures 9a, b, where 
the two cases with and without the lift force due to shear are compared. Contrary to figure 8, the 
particles continue to repeat the bouncing motion, but the particle distribution is too close to the 
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Figure 6. Optical fiber probe. Figure 7. Velocity distribution of air in the spanwise 
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Figure 8. Particle trajectories without abnormal bouncing (~ = 15 m/s) .  

bottom wall. It is found from comparison between figures 9a and 9b that the lift force definitely 
tends to lift the particles but, in general, its effect is small under the present conditions. Therefore, 
the lift due to shear was neglected in the later simulation. 

One finds from the above results that the empirical relations [12] and [13] obtained for pipe flow 
cannot be applied directly to channel flow. The reason is as follows. 

When dealing with abnormal bouncing in a pipe, irregularity in reflection in the z-direction was 
considered in addition to [12] and [13] so that the particles were dispersed not only in the r- and 
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Figure 9. Particle trajectories (z~ = 15 m/s)  (a) with lift force and (b) without lift force. 
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Figure  I0. Bounce  of  a particle aga ins t  a wall in (a) a pipe and  (b) a two-d imens iona l  channel .  

z-directions but also in the 0-direction, as shown in figure 10. The angle of reflection in the 
0-direction was termed the "yaw angle", which is given by random numbers. Consequently, some 
particles were lifted to a higher position due to collision with the wall and thus the particles were 
disperped widely in the pipe cross section. In the case of two-dimensional flow, the bouncing 
motion takes place only in the x- and y-directions. Therefore, so long as only [12] and [13] are 
used, the particle distribution does not become a realistic one. 

The next stage in the present work is to improve the equations of the bouncing model by referring 
to the actual phenomena in the channel constructed for this purpose. As expected, an increase in 
the value of the coefficient 6 in [12] makes the particles jump to a higher position after collision. 
For example, the particle trajectories shown in figure 11 are for a coefficient 6 value three times 
as large as the one (60) given by [12], i.e. 6 = 36o. In an experiment under the same conditions as 
in figure 11, we observed some particles colliding with the upper wall, though very few in number. 
However, figure 11 indicates that all particles show a similar pattern of trajectory and no particle 
collides with the upper wall. If a larger value is given to 6 to make the particles collide with the 
upper wall, this results in all particles colliding with the wall. This means that an irregularity is 
necessary for the abnormal bouncing model of two-dimensional flow also, in order to simulate 
particle motion. In pipe flows, random numbers for the yaw angle cause such an irregularity. 
Hence, it was attempted here to multiply the coefficient 6 by a random number R. First, the 
coefficient is expressed as 

6 = 5R0o, [14] 

and the corresponding trajectories are shown in figure 12. The calculation appears to give good 
results but on observing the figure more closely, one notices that the particle concentration is not 
higher near the lower wall. This is not true in actual horizontal flows, However, as long as [14] 
is used, the concentration has a maximum value near the center of the duct and remains low near 
the lower wall, even at a low air velocity (as shown in figure 13, where cp denotes the particle 
number density and ~p represents its value averaged over the cross section). Air and particle velocity 
distributions under the same conditions as in figure 13 are shown in figure 14. The velocity profile 
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Figure ] l .  Part icle trajectories (E = [5 m/s, o = 3 &o). 
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Fig u r e  12. Part ic le  trajector ies  (ff = 15 m/s, 6 = 5 Rro). 

of air is flattened to some extent due to the particles but the profile is not as asymmetric as observed 
in the experiment. To remove this discrepancy, a power of R was considered and the coefficient 
5 given by 

6 = c R ~ 5 o  . [15] 

The above equation indicates that the probability of a small value of 6 becomes higher if a large 
value is given to k. The physical interpretation of this is that the effect of abnormal bouncing is 
suppressed on average but some particles are allowed to jump extremely high. We found by trial 
and error that the following values for c and k give good agreement with measurements within 
the range of the present experiment: 

c = 5 ,  k = 4 .  [16] 

Calculations based on [16] are compared with measurements below. Figure 15 shows the particle 
concentrations at t2 = 7 m/s and ff = 15 m/s. Agreement between calculations and measurements is 
satisfactory in the case of t~ = 7 m/s, but not in the case of ~ = 15 m/s. If the air velocity exceeds 
15 m/s, the calculated concentration shows a uniform distribution. 

Air and particle velocity distributions are shown in figures 16 and 17. In general, the air velocity 
profile in the horizontal flow becomes asymmetric at low air velocity and high loading ratio values. 
This tendency is greater in the measurements than the simulation. Figure 17 shows that the 
calculated particle velocities tend to be higher than the measured values. 
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Figure 18 shows the calculated streamwise variations of the particle velocity (, averaged over 
the cross section and the pressure gradient dp/dx .  The pressure gradient measured in the region 
of fully-developed flow is compared with the calculated one in figure 19, the agreement is 
satisfactory. 

5. DISCUSSION 

A two-dimensional channel flow, which is seldom regarded as a practical means for particle 
transport, was chosen for this work because the treatment of equations of motion is simple. Owing 
to the simplicity of the field, a defect in the previous model for particle-wall collisions was found. 
Since the essence of the collision phenomenon does not change, whether in a two- or a 
three-dimensional field, the results obtained in the present work can be applied to pipe flows. 

Tsuji et al. (1985) previously derived the model of abnormal bouncing, [12] and [13], from 
comparisons between calculations and measurements of pipe flow, where the particle size and pipe 
diameter changed, respectively, from 0.5 to 5 mm and from 27 to 200 mm. The effects of these 
dimensions have not been investigated in obtaining [15] and [16], which are presented for the first 
time in this work. Hence, it is necessary in the future to determine how such parameters affect the 
present empirical relations. If  the empirical relations vary considerably according to the conditions, 
they are of little use as a model and alternative models must be sought. 

Fluid turbulence is also a factor in the irregular motion of particles. Further, particle-particle 
collisions increase its importance as the concentration increases. Taking these factors into 
consideration in the model is a topic for future studies but improvement of the model should be 
made step by step, otherwise it is difficult to know which factor is dominant. The present work 
indicates, at least, that modeling of particle-wall collisions is a key factor in simulation of 
horizontal flows. 

6. CONCLUSIONS 

A numerical simulation was attempted to obtain the velocity profiles of air and solids, solid 
concentration and pressure drop in a two-dimensional channel. For the fluid phase, the boundary 
layer equation was solved using a finite-difference method developed by Patankar & Spalding 
(1970). For the solid phase, the Lagrangian method was used, with trajectories of many particle 
being calculated. It was found that the calculated results of particle concentration largely depend 
on the treatment of particle-wall collisions, particularly irregular bouncing. This irregular bouncing 
was taken into consideration by using a modified "virtual wall model" where the wall is replaced 
with a virtual one when the incident angle of a particle at the wall is less than a certain specified 
value. In addition to the simulation, an experiment was performed in a two-dimensional channel, 
where the particle and fluid motions were measured using a Pitot tube and an optical fiber probe. 
The experimental results were used to determine the empirical parameters in the bouncing model. 
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A P P E N D I X  

Collision Between a Single Particle and a Wall 

Consider a three-dimensional collision of a spherical particle with a flat plate, as shown in figure 
AI. When the coefficients of restitution and kinetic friction are known, particle motions before 
and after the collision can be estimated by solving the impulsive equations. To solve the problem, 
the following assumptions are made: 

(1) Plastic deformation and fracture are neglected. 
(2) When the particle slides on the plate, the friction between the particle and plate 

obeys Coulomb's law. 

Y X 

/ ~ va • [~x, w×,~z ) / 

Figure AI.  Collision of a spherical particle with a flat plate. 
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(3) Once the particle stops sliding it does not begin again. 
(4) Throughout the collision process, the distance between the particle center of 

mass and the contact point is kept constant and equal to the panicle radius a. 

The process of collision is divided into two stages: the period during which the material in 
collision is compressed and the period during which this compression is released. The former and 
the latter are called the compression and recovery period, respectively. The coefficient of restitution 
e is defined by 

i ( . 2 )  
e = - -  [A.l] .f(1)' 

--n 

where J~) is the normal component of the impulse of the force which acts on a particle in the 
compression period and J~-') is the corresponding component in the recovery period. Coulomb's 
law states that the impulse of the friction force is the product of the impulse of the normal force 
and the coefficient of kinetic friction f. Thus, when the panicle slides on the X-Z plane, the impulse 
Jt of the friction force is expressed as 

Jt = - Exf Jri  - Ezf J rk,  [A.2] 

where i and k are unit vectors corresponding to the X- and Z-directions, and Ex and Ez satisfy the 
following relation: 

2 2 ex + Ez = 1. [A.3] 

The signs of Ex and ez are defined to be identical to those of  V~)+aw~ ) and V~)-aco~ ), 
respectively. 

In general, particle collisions incorporate particle rotation. Thus U (°), the velocity at the point 
at which the particle comes into contact with the wall, is the sum of the translation and rotation 
velocities, i.e. 

U (°) = V (°) + r x co 

((o) (o) . ( V ~ ) -  aco(x°))k. [A.4] = V x + a C O z ) l +  V(r°)j+ 

Before deriving the impulsive equations, one must note that there are three cases to consider 
regarding collision: 

Case I: the particle stops sliding in the compression period. 
Case II: the particle stops sliding in the recovery period. 

Case III: the particle continues to slide throughout the collision. 

For each of the above cases, the impulsive equations are derived by considering the momentum 
exchange. 

Table A1 shows the velocities, angular velocities and impulses for each moment and period 
corresponding to Case I. The only known variables are V (°) and ~o (°). The impulses j(s), j(o and 
j(2) are expressed as 

J(~> = - Exf J(~)i + J(~)j - Ezf J~)k, ~" [A.5] 

J(~) = j(~)i + J(~)j + J~)k [A.6] 

(0) 
Before the 
collision 

Velocity V (°) 
I 

Angular co (°) 
velocity 

Table A 1. Collision parameters for Case I 

(1) 
Compression period 

~_..The particle.....) 
slides 

(s) (r) 
v(') 9 

i 
_ ca(s) (b 

Impulse j(,) jo') j¢2) 

(2) After the 
Recovery period collision 

V 

CA,) 
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and 

J('-~ = J(~li + e(J(~l + J~')j  + J(:~k. [A.7] 

Considering the momentum exchange at each moment, one has the following impulsive equations: 

and 

M(V¢~ _ V(O)) = j(~l, 

M(V - V ~)) = jm,  

M(V - "V) = jc2~, 

I ( m  ~ -  m ,o~) = _ r x J ~ ,  

I ( d )  - eJ (~) = - r x J ( f ~  

l(co - e S ) =  - r  x j(2~, 

where M and I are the particle mass and moment of inertia, respectively. 
The boundary conditions are 

[VCS~ + r x oJ(s~]~ = 0, 

V + r x o S = 0  

and 

[V+r  x ~ ]~=0 ,  

where the subscript t denotes the tangential component.  

[A.81 

[A.9] 

[A.10] 

[A.11] 

[A.t2] 

[A. 13] 

[A. t 4] 

[A.15] 

[A. 16] 

The solutions to Case I are shown in column (1) of table A1; the solutions to Cases II and III, 
which are the same, are shown in column (2). 


